DKIST coronal diagnostics during early operations

Advancing high spatial/spectral resolution remote sensing of the off-limb solar corona and opening a new era in diagnostics of the coronal magnetic field.

Cryo-NIRSP Spectrograph	DL-NIRSP Spectrograph	VBI Imaging
Fe XIII λ10747 ; Log(T) ~ 6.22	Fe XI λ7892 ; Log(T) ~ 6.13 Fe XIII λ10747 : Log(T) ~ 6.22	Fe XI λ7892 ; Log(T) ~ 6.13
He I $\lambda 10830$; Log(T) ~ 4* Si X $\lambda 14300$ · Log(T) ~ 6.13	Fe XIII λ 10797 ; Log(T) ~ 6.22 He I λ 10830 ; Log(T) ~ 4* Si X λ 14300 ; Log(T) ~ 6.13	VISP Spectrograph
Si IX λ 39350 ; Log(T) ~ 6.04		Various lines: 380 to 900 nm
Cryo-NIRSP Context Imager		
Fe XIII λ10747 ; Log(T) ~ 6.22 He I λ10830 ; Log(T) ~ 4* Si IX λ39340 ; Log(T) ~ 6.04	 Topics: Polarized visible/IR line formation in the corona Techniques for extracting useful diagnostics Background-limited measurements at DKIST Useful Resources 	

1. Polarized visible/IR line formation in the corona

- VIS/IR coronal spectral lines (unlike EUV lines) are both collisionally and radiatively excited.
- I_{coll} depends on n_e²; I_{rad} depends on n_e (similar to Thompson scattered continuum). <u>Morphological structures seen in eclipse photos also expected in VIS/IR spectral intensity maps.</u>
- Spectral line analyses must include radiative component correction unless completely collisionally dominated.
- Optically-thin. Same line-of-sight integration challenges as in EUV.

Landi, Habbal, Tomczyk (2016); Image credit: Karen Teramura

1. Polarized visible/IR line formation in the corona

- VIS/IR coronal lines are typically magnetic-dipole (M1) transitions with polarization generated via:
 - Optical pumping effect of the incident radiation (i.e. scattering/atomic-level polarization)
 - The Zeeman Effect.
- Zeeman splitting increases as $\lambda^2 \rightarrow major driver of infrared coronal observations!$
 - Low field strengths of corona make transverse Zeeman effect too weak.
- Atomic-level polarization is modified by both the *Hanle Effect* and *Collisional Depolarization*.

Resulting polarized sensitivities:

- Circular polarization of spectral lines is sensitive to *longitudinal magnetic flux*.
- Linear polarization direction only sensitive to *magnetic azimuth in plane-of-sky*.
- Amplitudes of both circular and linear polarization dependent upon degree of atomic-level polarization, which needs multiple lines to constrain or atomic polarization modeling.
- Linear polarization direction is subject to ambiguities (180° and Van-Vleck) as well as the associated null points.

2. Techniques for extracting useful diagnostics

Integrated quantities and radial dependencies: [see Landi, Habbal, & Tomcyzk 2016; Del Zanna & DeLuca 2017]

- a) <u>Electron density</u> as function of radial distance can be related to continuum-polarized brightness
 - i) DKIST Data \rightarrow CN or DL full Stokes spectra with source separation.
- **b)** <u>**Plasma DEM**, **Φ**(**T**)</u> constrained by VIS/IR lines using EUV analysis techniques when collisionally dominated and coordinated with EUV diagnostics.
 - i) DKIST Data \rightarrow CN or DL-NIRSP intensity (or full Stokes) spectra.
- c) <u>Elemental abundances</u> can be derived from line ratio of two charge states from same ion in radiatively dominated regime. Good for FIP analysis, for example.
 - i) DKIST Data \rightarrow Candidate observation: Si X 1430 nm and Si IX 3935 nm.
- d) <u>Electron density</u> derived from line ratio of different transition of same ion with same charge state.
 - i) DKIST Data \rightarrow Sequential maps in Fe XIII line pair at 1074 nm and 1080 nm.
- e) <u>Excitation mechanisms</u>: Ratio of line to continuum intensity (or continuum-polarized brightness) discriminates collisionally and radiatively dominated regimes.
 - i) DKIST Data → CN or DL-NIRSP intensity (or full Stokes) spectra with background source separation.
- **f)** Integrated longitudinal magnetic flux: Stokes V observation in M1 line proportional to longitudinal magnetic flux.
 - i) DKIST Data \rightarrow CN or DL-NIRSP full Stokes spectra
- g) Non-thermal line broadening

2. Techniques for extracting useful diagnostics

Local structure morphology, dynamics, and single-point inversions [see, e.g., Habbal et al. 2011; Judge, Habbal,& Landi 2013; Tomczyk et al. 2007]

- a) <u>Temperature distribution/morphology</u>: Maps of spectral line intensity in different diagnostics provide thermal tomographic imaging.
 - i) DKIST Data → CN or DL-NIRSP Stokes I spectral maps, CN context images, VBI 789.2 nm images.
- b) <u>Doppler and translational velocities of eruptions</u>: Simultaneous imaging with spectral scans (or fast narrow FOV scans) give 3D velocity of eruptive events.
 - DKIST Data → CN or DL-NIRSP Stokes I data cubes with CN or VBI imaging.
- c) <u>Doppler shift oscillations and wave propagation</u>: Alfvenic and MHD modes have been observed in VIS/IR lines. Slit alignment along structures or 2D coverage provided by DL-NIRSP give chance to measure propagation speed/direction.
 - DKIST Data → CN slit or DL-NIRSP IFU Stokes I spectral data time series
- d) <u>Single-point inversion of coronal magnetic field</u>: Isolated structures identified in Stokes I maps suggest use of single-point magnetic field inversions [see Judge, Habbal,& Landi 2013 and Plowman 2014]
 - i) DKIST Data \rightarrow CN or DL-NIRSP Full Stokes mapped data cubes

2. Techniques for extracting useful diagnostics

Forward model comparisons using synthesized observables. [Gibson et al. Frontiers, 2016; Gibson et al. 2017; Dalmasse et al. 2016]

VIS/IR polarization diagnostics of the corona constrain numerical models of the 3D magnetic field. New magnetically sensitive observables that can be used to validating numerical models include

- a) Integrated linear polarization amplitude
- b) Linear polarization direction in plane-of-sky
- c) Integrated circular polarization amplitude

DKIST Data \rightarrow CN or DL Full Stokes spectral data cubes in multiple spectral lines.

It's critical to include DKIST spectropolarimetric data as the primary magnetic model constraint within a range of coordinated EUV and VIS/IR observations.

Model-data fitting (i.e. inversions) techniques are in their infancy for coronal magnetometry. (see Dalmasse et al. 2016).

Gibson et al. 2017

3. Background-limited measurements at DKIST.

- Sensitivity of coronal measurements at DKIST are limited by background radiant sources.
- Line intensities are $\approx 10^{-5}$ of the disk intensity; and the degrees of linear and circular polarization are a few-10% and ~ 10⁻⁴ of line signal, respectively.

Modeled line radiances from Del Zanna & DeLuca (2017)

Mirror scattering and sky conditions are the major limitations.

Primary mirror (M1) scattering is determined by mirror microroughness and *dust accumulation*. Figure assumes mirror has been *cleaned/washed* within <u>1 day</u> of observation.

Occulters at prime focus and gregorian focus limit illumination of downstream optics. *Lyot stop* rejects diffraction ring of primary.

Thermal radiation background not included in this Figure.

4. Useful Resources

References:

- Casini, R., White, S.M., Judge, P.G. (2017) *Magnetic Diagnostics of the Solar Corona: Synthesizing Optical and Radio Techniques*. Space Sci Rev,210, 145
- Del Zanna, G., & DeLuca, E. (2017) Solar coronal lines in the visible and infrared. A rough guide. ARXIV.
- Gibson, S. E., Rachmeler, L. A., White, S. M., eds. (2017). Coronal Magnetometry. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-220-0
- Judge, P.G., Habbal, S., Landi, E. (2013) *From Forbidden Coronal Lines to Meaninggul Coronal Magnetic Fields.* Solar Physics, 288, 267.
- Landi, E., Habbal, S.R., Tomczyk, S. (2016) *Coronal Plasma Diagnostics from Ground-Based Observations*. J. Geophys. Res. Space Physics, 121, 8237

Spectral line synthesis:

• Chianti v8 (http://www.chiantidatabase.org/)

Multiwavelength Coronal Forward Synthesis

• FORWARD (<u>https://www2.hao.ucar.edu/modeling/FORWARD-home</u>) [Gibson et al. 2016]

