DKIST CSP Workshop Laurel, MD 13 March 2018

DKIST Critical Science Plan Workshop #4:

Joint Science with Solar Orbiter and Parker Solar Probe

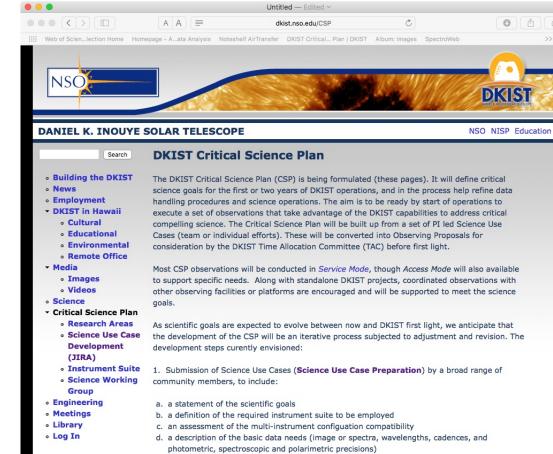
Introduction to the Critical Science Plan; and Life cycle of a Science Use Case

Gianna Cauzzi -- NSO (for Mark Rast)

<u>**1. Aim:</u>** By science first light, to be ready, *as a community*, to execute a set of observations exploiting the DKIST capabilities to address critical, compelling science.</u>

<u>**1. Aim:</u>** By science first light, to be ready, *as a community*, to execute a set of observations exploiting the DKIST capabilities to address critical, compelling science.</u>

<u>**1. Aim:</u>** By science first light, to be ready, *as a community*, to execute a set of observations exploiting the DKIST capabilities to address critical, compelling science.</u>


<u>**1. Aim:</u>** By science first light, to be ready, as a community, to execute a set of observations exploiting the DKIST capabilities to address critical, compelling science.</u>

2. How: Bottom-up approach, community based. Workshops one of the tools; NOT exclusive

http://dkist.nso.edu/CSP

Critical Science Plan Structure:

- Research Areas
- Research Topics
- Science Use Cases

e. a summary of the observing strategy and any joint facility coordination needs

2. How: Compile an extensive set of well defined, complementary Science Use Cases, detailing the topics to be investigated, the reasons why DKIST is necessary, and the type of DKIST observations necessary to address the science.

2. How: Compile an extensive set of well defined, complementary Science Use Cases, detailing the topics to be investigated, the reasons why DKIST is necessary, and the type of DKIST observations necessary to address the science.

- 1. Formulate science context and goals; specify *why* DKIST
- 2. Identify observational needs (spectral lines of interest, pattern, cadence, sensitivities)
- 3. Determine useful DKIST instrument suite
- 4. Assess instrument performance capabilities

	1	Bello-Gonzales	Nazaret	KIS	Germany	Member	
	2	Cao	Wenda	NJIT	US	Member	ſ
	3	Cauzzi	Gianna	AO	Italy	Member	ſ
	4	Cranmer	Steve	U. Colorado	US	Member	Ĩ
<u>3. How to</u>	5	da Costa	Fatima Rubio	Stanford	US	Member	ſ
	6	DeLuca	Ed	Harvard	US	Member	[
Role of th	7	dePontieu	Bart	Lockheed	US	Member	F
	8	Fletcher	Lyndsay	U. Glasgow	UK	Member	
	9	Gibson	Sarah	HAO	US	Member	
	10	Jeffries	Stuart	Georgia St	US	Member	
	11	Judge	Phil	HAO	US	Member	
	12	Katsukawa	Yukio	NAOJ	Japan	Member	
	13	Landi	Enrico	Michigan	US	Member	
	14	Petrie	Gordon	NSO	US	Member	
	15	Qiu	Jiong	MSU	US	Member	
	16	Rast	Mark	U. Colorado	US	Member	
	17	Rempel	Mattias	HAO	US	Member	
	18	Rubio	Luis Bellot	IAA	Spain	Member	
	19	Scullion	Eamon	TCD	Ireland	Member	
	20	Sun	Xudong	lfA	US	Member	
	21	Welsch	Brian	Wisconsin	US	Member	
	22	Goode	Phil	NJIT	US	Co-I	L
	23	Knoelker	Michael	HAO	US	Co-l	Ĺ
	24	Rosner	Robert	U. Chicago	US	Co-l	Ĺ
	25	Kuhn	Jeff	IFA	US	Co-I & Instrument PI	L
	26	Rimmele	Thomas	NSO	US	Ex-Officio	L
	27	Casini	Roberto	HAO	US	Instrument Pl	Ĺ
	28	Lin	Haosheng	IFA	US	Instrument PI	L
	29	Schmidt	Wolfgang	KIS	Germany	Instrument PI	L
	30	Woeger	Friedrich	NSO	US	Instrument PI	L

⁻SWG)

3. How to optimize the process:

Role of the DKIST Science Working Group (DKIST SWG)

- SWG will try to articulate the community vision of essential DKIST science through the Critical Science Plan
- The SWG will identify Science Use Case overlap and suggest team consolidation
- The SWG will assess whether the science proposed in the Science Use Cases requires DKIST capabilities
- The SWG will aim to minimize, NOT adjudicate, conflicts

3. How to optimize the process:

Role of the DKIST Science Working Group (DKIST SWG)

- SWG will try to articulate the community vision of essential DKIST science through the Critical Science Plan
- The SWG will identify Science Use Case overlap and suggest team consolidation
- The SWG will assess whether the science proposed in the Science Use Cases best exploits DKIST capabilities
- The SWG will aim to minimize, NOT adjudicate, conflicts
- DKIST Time Allocation Committee is final arbitrator, and will determine the order by which the Observing Proposals are executed

<u>4. Feedback to DKIST.</u> The existing (and future) Science Use Cases will inform the project about:

- Science most relevant to the community;
- Instruments, lines, modes of operation most requested (desired?) by the community;

<u>4. Feedback to DKIST.</u> The existing (and future) Science Use Cases will inform the project about:

- Science most relevant to the community;
- Instruments, lines, modes of operation most requested (desired?) by the community;

• Allow definition of efficient operation, data management

As a community we must:

- understand forthcoming capabilities
- define science goals
- compile Science Use Cases
- coordinate to form a complementary set of PI lead teams
- convert Science Use Cases into PI led Observing Proposals

Important Points:

- 1. This process will likely be iterative CSP structure is a non-rigid framework and the science will evolve.
- 2. The CSP process is not exclusive (all welcome) nor unique: direct submission of observing proposals to the NSO DKIST Time Allocation Committee (TAC) under a standard submission and review process will also be possible. The CSP (and this workshop) advantage is informational.
- 3. Observing proposals developed as a result of participation in the DKIST Critical Science Plan effort (including this workshop) will be reviewed by the DKIST TAC along with proposals submitted outside of the CSP structure.
- 4. There is *no* automatic conversion of Science Use Cases to Observing Proposals – success is dependent on continued engagement beyond this workshop proper and beyond the completed Science Use Case.
- 5. The development of the CSP in advance of the start of operations helps the project beyond science definition it helps in the development of essential operations and data management tools

The special case of SoLO and PSP

1. Aim:

By science first light, to be ready, *as a community*, to execute a set of observations exploiting the DKIST capabilities to address critical, compelling science.

The special case of SoLO and PSP

2. How:

Compile an extensive set of well defined Science Use Cases exploiting the synergy between different facilities, and the unique opportunities provided by stereographic configurations.

Maybe plan for a follow up of this workshop?