DKIST CSP Workshop Newcastle, England 9 April 2018

DKIST Critical Science Plan Workshop #5: Wave generation and propagation

JIRA: Writing a Science Use Case – Getting started

http://nso-atst.atlassian.net/

Collaborative JIRA environment for Science Use Case development

If you do not yet have an account, email an account request to:

DKISTCSP@nso.edu

DKIST CSP JIRA Site (https://nso-atst.atlassian.net/secure/Dashboard.jspa)

CSP Community DB

ntroduction • • • • • • • • • • • • • • • • • • •				
ctivity S	Stream			
Activity	Stream 🔳	3		
December	11			
	Valentin Pillet created UC-91 - Physical conditions at the Current Sheet trailing CMEs LLL Comment Vote Wat	tch		
December	08			
	Valentin Pillet commented on UC - Synoptic Coronal Observations i support of PSP and Solar Orbiter	2-90 in		
	Done			
	O LLL Comment Watch			
\$	Alexandra Tritschler commented UC-90 - Synoptic Coronal Observations in support of PSP at Solar Orbiter	d on nd		
	Hi Valentin, just a small correction: yes, the program asi for coordination but please choose "Synoptic" as Program Type.	ks		
	O LLL Comment Watch			
	Valentin Pillet created UC-90 - Synoptic Coronal Observations in support of PSP and Solar Orbiter			
	C LLL Comment vote wat	ICh		
December	07			

Pie Chart: All CSP Heat Map ... Filament Other Plage or Network Prominence Quiet Corona **Quiet Sun Sunspots** and/or Pores None There are 8 distinct 'Type of Target(s)' values in 81 Issues Two Dimensional Filter Statistic... ... Type of Target(s) Cryo-NIRSP (http://dkis 3 Filament **Research Topic** Total Issues: 81 Other 2 Plage or Network 3 None Prominence 3 Quiet Corona 4 Quiet Sun 6 Sunspots and/or 6 Pores 0 None Total Unique Issues: 12 Showing 8 of 8 statistics. Grouped by: Instrument Set Definition Other...

...

Bubble Chart: All CSP

...

...

15

Create a new Science Use Case

DKIST CSP: JIRA User's Guide Editing your Science Use Case (PI, Co-I)

		All CSP Save as ★				
Q	← Issues	Critical Scienc Y Type: All Y Status: All Y Assignee: Al	II • Contains text More • Q. Advanced			
+	Search issues	Order by 🗸				
		 UC-91 Physical conditions at the Current Sheet trailing CMEs 	Critical Science Plan: Use Case (UC) Development / U0 91			
	All CSP	UC-90 Synoptic Coronal Observations in support of PSP and Sola Physical conditions at the Current Sheet trailing CMEs				
		 UC-89 Tracking the evolution of Corona Mass Ejections plasma 	🖋 Edit 💭 Comment Assign Start Progress Admin 🗸			
	My open issues	 UC-88 Properties of the solar wind source regions 	Assigne			
	Reported by me	 UC-87 Fine-structure of macro-spicules 	S OPEN Reporte			
	Open issues	 UC-86 Neutral Line Magnetic Context of Active Region Coronal H 	(View workflow) Hopsing Winor Va			
	Done issues	 UC-85 The cold chromosphere: Mapping CO spatial and temporal 	Resolution: Unresolved Principa Labels: None & Valentin			
Viewed recently O UC-84 Resolving the spatial and temporal evolution of event-drive GENER	Addition Adam F					
	Created recently	 UC-83 Flux Emergence Rates of Super-small-scale Magnetic Fields 	Gianna. SCIENCE JUSTIFICATION kreeves			
	Resolved recently	 UC-82 Photospheric magnetic energy input and the chromospheri 	OBSERVATION SPECIFICS Votes: TARGET SPECIFICS 0 Vo			
		 UC-81 Chromospheric Signatures of Active Region Microflares 	INSTRUMENT SPECIFICS Watche			
	Manage filters	 UC-80 Chromospheric and photospheric magnetic field evolution 	National Solar Observatory Abstract: Created			
		 UC-79 Spectro-polarimetric detection of propagating Alfven waves 				
		 UC-78 Reconnection events in the low solar atmosphere driven b 	reconnection occurs and that likely results in the post flare loops 4 days arcades. By doing off-limb			
		 UC-77 Quasi-periodic oscillations with respect to high altitude re 	spectroscopy and polarimetry of this region we can constrain the			
		 UC-76 Sub-Arcsec Magnetic Signatures of the Fine Coronal and 	physics of the reconnection processes.			
		 UC-75 Accumulation of magnetic twist in eruptive filaments in chr 	Program Type: Target of Opportunity			
		 UC-74 Emerging Flux: Current (de)Neutralization and reconnection 	Observing Coordination: We will need to make sure a CME is			
=		 UC-73 On the origin of isolated pores in the quiet-Sun and active 	occurring and understand where the current sheet behind the CME is			

dit issue: UC-91 Configure fields v GENERAL INFORMATION SCIENCE JUSTIFICATION OBSERVATION SPECIFICS TARGET SPECIFICS INSTRUMENT SPECIFICS ummary* Physical conditions at the Current Sheet trailing CMEs rincipal Investigator vmpillet tart typing to get a list of possible matches. p>Note: Must have CSP Account setup Affiliation National Solar Observatory bstract CMEs eruption are known to have a trailing current sheet where reconnection occurs and that likely results in the post flare loops arcades. By doing off-limb spectroscopy and polarimetry of this region we can constrain the physics of the reconnection processes. ease provide a short summary of your Science Use Case. dditional Users to E-mail Adam.Kowalski, Gianna.Cauzzi, han.huitenbroek, katharine.reeves 120 tart typing to get a list of possible matches. rogram Type None Regular (None of the below) Target of Opportunity Synoptic Coordinated lease select from the above arget of Opportunity: Can be something that is infrequent but predictable (e.g., Planetary Transit) or unpredictable (e.g., a flare). ynoptic: Observations extending over multiple proposal cycles. oordinated: Requires active coordination with another facility. bserving Coordination We will need to make sure a CME is occurring and understand where the current sheet behind the CME is located. This might require AIA/IRIS coordination.

If the observations require coordination with another facility, please elaborate on the details of the planned coordination.

DKIST CSP Science Use Case development strategy:

- Formulate science context and goals

 (JIRA form tabs General Information, Science Justification, Target Specifics)
- Identify observational needs (spectral lines of interest, pattern, cadence, sensitivities)
 (JIRA form tab Observation Specifics, Instrument Specifics)
- Determine useful DKIST instrument suite (JIRA form tabs – Observation Specifics, Instrument Specifics)
 FIDO – aka Coudé configuration and Data Rate tool, aka Beam Splitter Tool
- Assess instrument performance capabilities (JIRA form tabs – Instrument Specifics)
 Instrument Performance Calculators (IPCs)

Determine useful DKIST instrument suite **DKIST Instrument Summary Table** http://dkist.nso.edu/CSP/instruments

	Instrument type	Spectral range	Spectral resolution	Spatial sampling	Maximum Instantaneous Field of View	Maximum Sampled Field of View	Peak Cadence	Analogous Instruments
Visible Broadband Imager VBI (Blue)	High Cadence, High Resolution Imager	390–550nm (sequential filter sequencing)	N/A	0.011"	45" x 45"	2′ x 2′ (sequential field sampling)	3.2 sec (reconstructed) 0.03 sec (raw images)	ROSA, Hinode/BFI High cadence, high spatial resolution
Visible Spectropolarimeter ViSP	Scanning Slit Spectropolarimeter	380-900nm (3 spectral windows at a time)	>180,000	0.0195" (arm 1) 0.0236" (arm 2) 0.0295" (arm 3) [sampling along slit]	5 slits Width x Length 0.028" or 0.041" or 50" (arm 1) 0.053" or x 60" (arm 2) 0.106" or 75" (arm 3) 0.214"	Slit length x 2'	0.5-10 sec per slit position (polarimetry) 0.02-0.2 sec per slit position (intensity-only)	SPINOR, Hinode/SP, IRIS, GRIS Scanning spectrograph, high spectral fidelity
Visible Tunable Filter VTF	Fabry Perot Imaging Spectropolarimeter	520-870nm (sequential scans through multiple spectral lines)	FWHM 6-8 pm	0.014"	60" x 60"	60" x 60"	Typical scan times per spectral line: 0.5-2 s (intensity only); 2-10 s (polarimetry)	IBIS, CRISP, GFPI Imaging spectropolarimeter
Visible Broadband Imager <i>VBI (Red)</i>	High Cadence, High Resolution Imager	600–860nm (sequential filter sequencing)	N/A	0.017"	69" x 69"	2' x 2' (sequential field sampling)	3.2 sec (reconstructed) 0.03 sec (raw images)	ROSA, Hinode/BFI High cadence, high spatial resolution
Diffraction Limited Near Infrared Spectropolarimeter <i>DL-NIRSP</i>	Integral Field Unit Spectropolarimeter	500-900nm 900-1350nm 1350-1800nm (1 filter band per channel)	125,000	0.03" (high res) 0.077" (mid res) 0.464" (wide field)	2.4" x 1.8" (high res) 6.16" x 4.62" (mid res.) 27.84" x 18.56" (wide)	2' x 2'	Depends on resolution and and total field of view. E.g. 6s for one tile, on-disk, high resolution, full polarimetry	SPIES True Imaging Spectropolarimeter: simultaneous 2D FOV and spectral information using fiber-fed IFU
Cryogenic Near Infrared Spectropolarimeter Cryo- NIRSP	Scanning Slit Spectropolarimeter	1000-5000nm (1 filter band at a time. About 70 s to switch filters)	100,000 on-disk 30,000 off-limb	0.12" [along slit] (no Adaptive Optics)	<i>2 slits</i> 0.15″ x 120″ slit 0.5″ x 240″ slit	4' x 3' (near limb) 5' round (off-limb)	Heavily depends on signal to noise. Maximum frame rate is 10 frames per second e.g. 1s per slit position near-limb/ chromosphere	CYRA (BBSO) Cryogenic, scanning spectrograph, novel diagnostics
Cryo-NIRSP Context Imager	Imager	1000-5000nm (1 filter band at a time, with fast switching time to support sequential observations during a single-band spectrograph scan.)	N/A	0.052" (no Adaptive Optics)	100" x 100"	4' x 3' (near limb) 5' round (off-limb)	Heavily depends on signal to noise. Maximum frame rate is 10 frames per second e.g. 1s per slit position near-limb/ chromosphere	CYRA (BBSO) Cryogenic, scanning spectrograph, novel diagnostics

Facility Instrument Distribution Optics (FIDO):

- FIDO diverts short and *passes long wavelengths* with each successive beamsplitter encounter (a few exceptions)
- Changing from one optical configuration to another is a manual process that requires up to one day to complete
- Cryo-NIRSP receives all the light, can not operate simultaneously with any of the other DKIST instrumentation or the adaptive optics system, can be accessed within several tens of minutes.

Visible light cameras for instruments are provided by a UK consortium.

Check your selection using the Beam Splitter (FIDO)and Data-rate Analysis Tool

INPUTS: Wavelengths and modes for each desired instrument

Priorities can also be used for optimization (instrument selection)

		— 400	~ 450		
Camera 1	✓ 393 nm	✓ 430 nm	450 nm	486 nm	
	ReconstructedImage	ReconstructedImage	ReconstructedImage	ReconstructedImage	
Priority:	1	1	1	1	
Camera 2	🗹 656 nm	668 nm	705 nm	🗌 789 nm	
	ReconstructedImage	ReconstructedImage	ReconstructedImage	ReconstructedImage	
Priority:	1	1	1	1	
			VTF		
Cameras	🗹 525 nm	630 nm	656 nm	854 nm	
	UnbinnedPolarimetric Mode				
Priority:	1	1	1	1	
			ViSP		
🗸 Camera 1	wavelength [nm]:	700		Priority:	1
Camera 2	wavelength [nm]:			Priority:	1
Camera 3	wavelength [nm]:		Priority: 1		
VeryFastCade	ence (intensity only)	<u> </u>			
			DL-NIRSP		
🗸 Camera 1	○ 789 nm	O 854 nm		Priority:	1
🗸 Camera 2	🗌 1074 nm	O 1083 nm		Priority:	1
🗸 Camera 3	◯ 1430 nm	• 1565 nm		Priority:	1
FastCadence	(low pol. precision)				

Output to be included under INSTRUMENT SPECIFICS tab on JIRA form

Instrument Performance Calculators (IPCs)

- Set of tools (i.e. software programs/applications) to explore instrument capabilities – e.g. line selection, exposure times, SNR etc.
- A *separate* IPC needs to be run for each instrument. VBI and VTF are Java applications (1.9); ViSP and DL-NIRSP run in IDL (8+). (The Cryo-NIRSP IPC unfortunately is not yet ready for distribution)

Instrument Performance Calculators: http://dkist.nso.edu/CSP/instruments

Output can be attached to JIRA form for sharing with team and for possible future Science Use Case development.

BUT relevant content of IPS must be entered into Science Use Case as well.

http://nso-atst.atlassian.net/ Instructions: UC-69

	$\langle \rangle$	A A A	sian.net/browse/UC-69?filter=14903 Č	A O
IIII Web	b of Scienlection Home Noteshelf AirTransfer	Homepage - Aata Analysis DKIST Critical Plan DKIST	Album: images SpectroWeb BASS2000: Solar spectrum Fishing Noman Ma	gazine >> -
٠	NSQ	All CSP Save as Details ★		[] [] [] [] [] [] [] [] [] [] [] [] [] [
a +	← Issues	Critical Scienc Y Type: All Y Status: All Y	Assignee: All Y Contains text More Y Q Advanced	≣⊡ ∽
	Search issues	 UC-72 Observe Coronal and Chromospheric Jets in 	Critical Science Plan: Use Case (UC) Development / UC-69	24 of 82 🔺 🗸
	All CSP	UC-71 Structure, Dynamics, and Magnetic Environ	Science Use Case instructions	
		UC-70 Magnetic structure, formation and evolution	✓ Edit □ Comment Assign Start Progress Admin ↓	
	My open issues	 UC-69 Science Use Case instructions 	Type: Science Use Case Assigne Status: OPEN (View workflow) M	ee: ark Rast
	Reported by me	UC-65 Evolution of 3D magnetic configuration at m	Priority: Vinor Reporter	er:
	All issues	 UC-64 FIP fractionation as tracer of solar wind sour 	Labels: None Principa	ark Rast al Investigator:
	Open issues	UC-63 Short-term evolution of internetwork magnet	GENERAL INFORMATION	ast
	Done issues Viewed recently	UC-62 Are quiet-Sun internetwork fields turbulent?	SCIENCE JUSTIFICATION 0	
	Created recently	UC-61 DKIST and Solar Orbiter observations for un	TARGET SPECIFICS INSTRUMENT SPECIFICS 0 St	rs: art watching this issue
	Resolved recently	UC-60 Coronal helium abundance from joint DKIST	Use Case Principle Investigator is generally Created also the UC creator. PI can add Co-Is (via 02/Nov.	i: /17 7:31 AM
≡	Updated recently	UC-59 Co-ordinated observations with DKIST and S	'Additional Users to E-mail' field) and can re- assign UC to another PI. CO-I's must have Update	d:
		O UC-58	CSP JIRA account (send email address 19/Dec/ DKISTCSP@nso.edu for account request).	/17 4:02 PM
	Manana filtere	t₃ 12>	Abstract:	

DKIST CSP: JIRA User's Guide Status and Labels Fields

ب	so real	All CSP Save as *		
٦	← Issues	Critical Scienc Y Type: All Y Status: All Y	Assignee: All Contains text More Advanced	
F	Search issues	Order by v OUC-91 Physical conditions at the Current Sheet trai	Critical Science Plan: Use Case (UC) Development	eation
	All CSP	 UC-90 Synoptic Coronal Observations in support o 	of upflowing plasma on the Sun	
		 UC-89 Tracking the evolution of Corona Mass Eject 	🖋 Edit 💭 Comment Assign Start Progress Admin 🗸	
	My open issues	 UC-88 Properties of the solar wind source regions 	Type: Science Use Case Status: OPEN (View workflow)	Assign
	Reported by me	UC-87 Fine-structure of macro-spicules	Priority: ¥ Minor	Report
	Open issues	 UC-86 Neutral Line Magnetic Context of Active Re 	Labels: None /	Drincin
	Done issues	 UC-85 The cold chromosphere: Mapping CO spatia 	GENERAL INFORMATION SCIENCE JUSTIFICATION	Louise
	Viewed recently	 UC-84 Resolving the spatial and temporal evolution 	OBSERVATION SPECIFICS TARGET SPECIFICS INSTRUMENT SPECIFICS	Daniel

\$	NSC	All CSP Save as ★	
Q	← Issues	Critical Scienc Y Type: All Y Status: All Y	Assignee: All Contains text More Advanced
+	Search issues	Order by v UC-91 Physical conditions at the Current Sheet trai	Critical Science Plan: Use Case (UC) Development / UC-61
	All CSP	 UC-90 Synoptic Coronal Observations in support o 	of upflowing plasma on the Sun.
		 UC-89 Tracking the evolution of Corona Mass Eject 	🖋 Edit 💭 Comment Assign Start Progress Admin 🗸
	My open issues	 UC-88 Properties of the solar wind source regions 	Type: Science Use Case Assign Status: OPEN (View workflow)
	Reported by me	UC-87 Fine-structure of macro-spicules	Priority: ¥ Minor Report
	Open issues	 UC-86 Neutral Line Magnetic Context of Active Re 	Labels: None P
	Done issues	 UC-85 The cold chromosphere: Mapping CO spatia 	GENERAL INFORMATION SCIENCE JUSTIFICATION
	Viewed recently	 UC-84 Resolving the spatial and temporal evolution 	OBSERVATION SPECIFICS TARGET SPECIFICS INSTRUMENT SPECIFICS Daniele PI Affiliation: UCL-MSSL Susance

- For now please do not • select Start Progress (which changes the Status field)
- If you worked on your Science Use Case as part of a DKIST CSP Workshop, please edit Labels as:
- CSPW-SPD2016
- **CSPW-Huntsville**
- CSPW-DC

- **CSPW-Freiburg**
- **CSPW-Nagoya**
- CSPW-JHU/APL
- **CSPW-Newcastle**
- CSPW-NMSU
- CSPW-Rice
- CSPW-Bozeman
- **CSPW-Synoptic**
 - as appropriate.

http://dkist.nso.edu/CSP

- Critical science description (living document) with links to Science Use Case titles and abstracts, and ultimately their full text
- Links to Instrument and other summary documents
- Links to beam-splitter configuration and data rate analysis tool (FIDO)

NOTE: LINKS to ALL documents and tools at MASTER LINK: <u>https://dkist.nso.edu/CSP/instruments</u>. Everything can be found through this one link.

http://nso-atst.atlassian.net/

Collaborative JIRA environment for Science Use Case development, and ultimately Observing Proposal development

https://www.dropbox.com/sh/uzwdc03ayovxr5o/AABuZbWtCnfPqG8F2zHaeCFta? dl=0

Dropbox link with summary documents (Instruments, Data Handling System (DHS), Facility Instrument Distribution Optics (FIDO), JIRA User's guide), and Instrument Performance Calculators (IPCs)