Insight on chromosphere dynamics from numerical simulations

Expected signatures of spicule formation and evolution

Haruhisa lijima (ISEE, Nagoya-U)

Chromospheric jets

Chromospheric jets

- **Spicules** in quiet regions and coronal holes (length ~ 5–15 Mm)
- Dynamic fibrils in active regions (length ~ 3 Mm)
- Penumbral microjets, umbral dynamic fibrils, Hα-surges, Ellerman bomb,...

Involved physical processes

- MHD shocks and waves: mode conversion, nonlinear amplification
- Strong stratification:
 high β -> very low β
- Partial ionization
- Radiation

In this presentation

DKIST

- Very high spatial resolution (source region ~ sub-arcsec?)
 chromospheric magnetic field
- Main question
 - What is the formation mechanism of spicules?
 Is it possible to distinguish formation mechanisms for each spicule from observation?
- To reach this goal
 - Summarize possible formation mechanisms and expected signatures to distinguish them from the observation.

Possible drivers of spicules

Acoustic wave

Magnetic reconnection

Alfvén wave

Alfvén wave -> Sound wave [IW]

Matsumoto & Shibata (2010)

Possible drivers of spicules

Magnetic reconnection

Alfvén wave

Alfvén wave -> Sound wave [W] Height

Matsumoto & Shibata (2010)

Sound wave model

Acoustic wave (driver)

P-mode oscillation

Granular collapse

Flux tube pumping

Amplification by stratification

Shock wave

Shock-TR interaction

Jet formation

Height/Time

Acoustic wave (driver)

Amplification by stratification

Brinkley & Kirkwood (1947) Ohno et al. (1960, 1961) Shibata & Suematsu (1982)

by stratification

Brinkley & Kirkwood (1947) Ohno et al. (1960, 1961) Shibata & Suematsu (1982)

Brinkley & Kirkwood (1947) Ohno et al. (1960, 1961) Shibata & Suematsu (1982)

Landau & Lifschitz (1959) Osterbrock (1961) Hollweg (1982)

Sound wave driven jets | density

Sound wave driven jets | temperature

Sound wave driven jets | div(V)

Sound wave driven jets | evolution

Plots: Along a magnetic field line

P-mode oscillation

Georgobiani et al. (2012)

Spherical harmonic degree

P-mode oscillation

Collapsing granule

Skartlien et al. (2000)

log₁₀ P_{mag} P-mode oscillation 4.0 4.5 5.0 5.5 6.0 Collapsing granule 200 Flux tube pumping Kato et al. (2012, 2016) -200 -400 -600 shock v $_{0} = 1$ -800 epth unity -1000 downdraft of a convective cell downward dr -1200of the convec 4000 4400 4800 5200 x [km]

P-mode oscillation

Collapsing granule

Flux tube pumping

Colliding flux tubes

P-mode oscillation

Collapsing granule

Flux tube pumping

Colliding flux tubes

Other more indirect sources which can be observed in upper layer.

=> Alfvén wave models, Reconnection models, ...

Sound wave model

Acoustic wave (driver)

P-mode oscillation Granular collapse Flux tube pumping

Shock wave

Jet formation

Amplification by stratification

$$V_{\parallel} \propto \rho^{-\alpha} B^{1/2}$$

$$\alpha \sim 0.1 - 0.5$$

depending on energy loss by shock and/or radiation.

Shock-TR interaction

$$V_{
m jet} \propto V_{\parallel}$$

Importance of the density diagnostics

How can we argue that the observed sound wave has enough power to drive the observed spicule?

=> From the information of density and magnetic field.

Amplification by stratification

$$V_{\parallel} \propto \rho^{-\alpha} B^{1/2}$$

$$\alpha \sim 0.1 - 0.5$$

depending on energy loss by shock and/or radiation.

Example 1: high velocity at upper chromosphere.

$$V_{\parallel} \sim 40 \text{ [km/s]}, \ \rho \sim 10^{-12} \text{ [g/cm}^3]$$

Example 2: low velocity at lower chromosphere

$$V_{\parallel} \sim 10 \text{ [km/s]}, \ \rho \sim 10^{-9} \text{ [g/cm}^3]$$

Importance of the density diagnostics

How can we argue that the observed sound wave has enough power to drive the observed spicule?

=> From the information of density and magnetic field.

Amplification by stratification

$$V_{\parallel} \propto \rho^{-\alpha} B^{1/2}$$

$$\alpha \sim 0.1 - 0.5$$

depending on energy loss by shock and/or radiation.

Example 1: high velocity at upper chromosphere.

$$V_{\parallel} \sim 40 \text{ [km/s]}, \ \rho \sim 10^{-12} \text{ [g/cm}^3]$$

Example 2: low velocity at lower chromosphere

$$V_{\parallel} \sim 10 \text{ [km/s]}, \ \rho \sim 10^{-9} \text{ [g/cm}^3]$$

Sound wave model

- Source
 - P-mode, granule collapse, flux tube pumping, flux tube collision, etc.
- Expected signatures
 - Photospheric counterpart of acoustic source (Although some mechanisms will be inside the convection zone.)
 - Amplification of longitudinal velocity (multi-wavelength observation with density and longitudinal velocity diagnostics)
 - No need of cancellation nor complex magnetic field configuration
- Note
 - Amplification process of shock is also appeared in other models.
 It is critical to provide the quantitative tracking of each acoustic wave from the photospheric layer.

Possible drivers of spicules

Acoustic wave

Alfvén wave

Alfvén wave -> Sound wave [IM] Height

Matsumoto & Shibata (2010)

Reconnection heating model

Reconnection (driver)

Joule heating/Pressure pulse

Shock wave

Jet formation

Reconnection (driver)

Reconnection outflow

Shock wave

Jet formation

Reconnection (driver)

Reconnection outflow

Slow-mode shock (with tension force)

Jet formation

Height of the reconnection point
Upper chromosphere

Shock + Whip-like Acceleration type

Jet B

× : Reconnection point

: Reconnection outflow

Takasao et al. (2013)

Micro-filament eruption model

Sterling et al. (2016)

Helical reconnection model

Magnetic reconnection model

- Energy source
 - Joule heating and/or reconnection outflow
- Expected signature
 - Cancellation of magnetic polarity in the photosphere
 - Transient brightening in high temperature lines (may be observed even in EUV or X-rays)
 - Complex magnetic field structure in photosphere and/or chromosphere, sometimes with flux emergence
 - Bi-directional outflow (in some cases)

Possible drivers of spicules

Acoustic wave

Magnetic reconnection

Mechanism of Alfvén wave driven jet

Alfvén wave (driver)

Acoustic wave

Shock wave

Jet formation

- (1) Amplification during the propagation
- (2) Mode conversion to acoustic wave

(3) Amplification by stratification

(4) Shock-TR interaction

Vortex in the photosphere and chromosphere

Torsional wave model | 3D simulation

Right: optically thin emission with the Gaussian contribution function G(T) that mimics the chromospheric line emission (~ 10 kK).

$$\epsilon = \int n_{\rm e} n_{\rm H} G(T) \mathrm{d}l$$

lijima & Yokoyama (2017, ApJ)

Multi-threaded nature of spicules

Torsional wave model | 3D simulation

Torsional wave model | 3D simulation

Torsional motion at the photosphere causes the twist in the chromosphere.
When twist becomes sufficiently strong, it releases the free energy and accelerate the plasma.

Iijima & Yokoyama (2017, ApJ)

Twist and magnetic flux imbalance

Flux imbalance

Kitiashvili et al. (2013)

Wedemeyer & Steiner (2012/14) Shelyag et al. (2013)

Regional dependence on flux imbalance

Alfvén wave model

- Energy source
 - Torsional Alfvén wave
- Expected signature
 - Vortex in the photosphere and chromosphere
 - Twisted magnetic field in the chromosphere
 - Regional dependence on the flux imbalance
 - No need of magnetic field cancellation

Spicule = Plasma? | Type II spicule

Fast apparent speed > 100 km/s

Linear trajectory (e.g., in SOT/Ca II H)

Heating during the evolution?

Heating during the evolution?

Temperature

Transverse Velocity

Apparent high-speed is produced by the propagating Alfvén wave? Mass density (De Pontieu et al., 2017)

Joule heating

Heating by the (transverse) Alfvén wave with ambipolar diffusion?

Martinez-Sykora et al. (2017)

How can we distinguish formation mechanisms?

- Sound wave model (most difficult?, requires highly quantitative analysis)
 - Continuous and quantitative tracking of sound wave from the photosphere to the TR.
- Reconnection model
 - Cancellation and transient brightening in high-T lines
- Alfvén wave model
 - Vortex and twist in the chromosphere
- In general
 - **Density diagnostics** in photosphere, chromosphere, and TR is very important to quantify the "amplitude" of the jet velocity under the amplification.
 - Regional dependence is also helpful to distinguish the formation process.

Importance of the density diagnostics

Possible formation models of spicule

Energy source (driver)

P-mode oscillation Collapsing granule Flux tube pumping

Kink wave Alfvén wave Reconnection out flow
Heating by reconnection
Micro-filament eruption

Acoustic perturbation

Amplification by stratification

Shock wave

Shock-TR interaction

Jet formation

How we can distinguish formation mechanisms?

Flow chart

Possible drivers of spicules

Acoustic wave

Alfvén wave

Alfvén wave -> Sound wave [IW] Height

Matsumoto & Shibata (2010)

Guid-field reconnection

How we can distinguish formation mechanisms?

Regional dependence

Formation of shock wave

Formation of shock wave

Formation of shock wave

