Infrared Eclipse Observations: Implications for DKIST

Jenna Samra, Shadia Habbal, Philip Judge, Adi Ding

DKIST CSP Workshop 28 June 2018

The Airborne IR Spectrometer

Airborne InfraRed Spectrometer (AIR-Spec)

NSF/NCAR Gulfstream-V High-performance Instrumented Airborne Platform for Environmental Research (GV HIAPER)

https://www.eol.ucar.edu/content/about-hippo

Target Lines

Goals

- 1. Measure line wavelengths and intensities in different regions of the corona.
- 2. Measure intensity gradient as a function of distance from the limb. *Information on line excitation processes*
- 3. Search for time-varying Doppler velocities. *Signatures of waves or flows*

Eclipse Data Summary

1. West Limb	63.5 sec	953 frames
2. Prominence	41.5 sec	622 frames
3. East Limb	35.7 sec	536 frames
4. Prom./West Limb	82.4 sec	1236 frames
5. Chromosphere	5 sec	75 frames

DKIST CSP Workshop

Emission Line Parameters

Obs. 3, East Limb

	Vacuum Wavelength (µm)	FWHM (Å)	Amplitude (σ)	Integrated Flux (10 ¹² ph s ⁻¹ cm ⁻² sr ⁻¹)
Si X	1.4308	10.1	185	44
S XI	1.9217	10.8	13	7.8
Fe IX?	2.8436	21.8	9.3	1.4
Fe IX?	2.8537	12.3	4.2	0.36
Mg VIII	3.0287	18.4	9.3	1.3
Si IX	3.9362	23.1	17	4.4

Fe IX 2.84 µm, First Observation

- 2.844 μ m, 3s23p53d 3F \downarrow 3 \rightarrow 4 \uparrow o
- First observation by AIR-Spec
- Total atmospheric absorption
- ge 250 200 AIR-Spec Intensity (DN) 150 Fe IX 100 50 NAI 2.8 2.82 2.84 2.86 2.88 2.9 Wavelength (µm) in air

- 2.218 µm, 3s23p53d 3F↓2 → 310
- Similar branching ratio to 2.844 μm
- Transmitted to the ground

Telluric Absorption, 14 km

- Atmospheric absorption band overlaps Si X
- At 14 km, affects baseline but not Si X line shape
- At **3 km**? Implications for groundbased observatories
 - Is simultaneous atmospheric monitoring required to achieve the necessary spectropolarimetric precision?
 - How precisely do we need to know the rest wavelengths of the emission lines?

Intensity Gradient, East Limb

DKIST CSP Workshop

Si X Intensity Gradient

Obs. 3

Obs

0.2

Mean

Obs

Normalized Intensity

10⁻¹

10⁻²

0

AIR-Spec Si X

04

06

0.4

- EUV lines expected to be collisionally dominated ($\sim n \downarrow e \uparrow 2$)
- **Visible lines** have radiative contributions
 - Compare with EUV to find relative importance (Habbal et al. 2011)
- IR lines? Compare with AIA.

Distance from Limb (R_o)

DKIST CSP Workshop

Si X Velocities

- Two measurements of instrument PSF
 - 3rd contact spatial PSF (black)
 - H I Paschen line, 1.875 μm (red)
 - Both have 7.5 Å FWHM
- Si X 1.43 µm profiles
 - At least 40^{-1} wider than PSF
 - 150 km/s non-thermal width
 - Double Gaussian needed to fit obs. 2 and 4
 - Velocity separation > 100 km/s
- Hypothesis: Distinct flows superimposed along the line of sight

Ground-based visible spectrometer 800 km/s, coronal & chromospheric lines 17:45 UTC

Ground-based Comparison

Shadia Habbal Adalbert Ding Michael Nassir

AIR-Spec slit 18:25 UTC

for use

t released for use

Not released for use

H α Red Shifted

Not released for use

AIR-Spec slits 18:22 – 18:26 UTC 0 km/s

250 km/s

Not released for use

Not released

Ground-based visible spectrometer 17:51 UTC

Off-Limb Activity in AIA 171 & 304

Processed by Nathalia Alzate

28 June 2017

DST-processed LASCO/C2 images with white light eclipse image

Conclusions

- IR lines are visible throughout the corona
 - Fe IX 2.218 μm should be visible based on AIR-Spec detection of the 2.844 μm line
- Line intensity and radial fall-off similar to model predictions (Judge 1998, Del Zanna & Deluca 2018)
 - Significant radiative contributions to Cryo-NIRSP lines Si X 1.43 μm and Si IX 3.93 μm
- Faster than expected flows in coronal plasma, due to off-limb activity during the eclipse
- Telluric absorption may be important